
Locks

▪ std::lock_guard and std::unique_lock manage the lifetime of the

their mutex according to the RAII-Idiom.

▪ Needs the header <mutex>.

▪ RAII-Idiom (Resource Acquisition Is Initialization)

▪ The lifetime of a resource is bound to an automatic object.

▪ The resource will be initialized in the constructor of the object; released in the destructor

of the object.

▪ The RAII-Idiom is often used in C++: Smart pointer.

In case the lock goes out of scope, the resource will be

immediately released.

std::lock_guard

std::lock_guard is for the simple use case.

▪ std::lock_guard

▪ Automatically locks the mutex in its constructor and releases it in its destructor.

▪ Is cheaper to use than its more powerful brother std::unique_lock.

std::mutex myMutex;

auto res = getVar();

{

std::lock_guard<std::mutex> myLock(myMutex);

sharedVariable = res;

}

std::unique_lock

Function Description

lk.lock() Locks the associated mutex.

lk.unlock() Releases the associated mutex.

lk.try_lock(),

lk.try_lock_for(rel_time),

lk.try_lock_until(abs_time)

lk tries to lock the mutex.

lk.release() Releases the mutex without releasing it.

lk.swap(lk2), std::swap(lk,lk2) Swaps the locks.

lk.mutex() Returns a pointer to the associated mutex.

lk.owns_lock() Tests if the lock has a mutex.

std::lock(...) Locks an arbitrary number of mutex atomically.

In C++14 there is a std::shared_timed_mutex.
You can implement reader-writer locks in combination with std::shared_lock .

uniqueLock.cpp

readerWriterLock.cpp

