
Pointer

▪ For each type T exists a pointer to T.

▪ The pointer has the memory address in which the data is.

▪ Using (*) makes T to a pointer to T:

▪ The & symbol returns the memory address of T.

▪ A pointer can only refer to an address of the same type.

int i = 20;

int* iptr = &i;

Pointer

▪ Dereferencing

▪ iptr returns the value (pointer)

▪ *iptr dereferences the pointer (underlying value)

▪ Pointer arithmetic

▪ shows the relation between pointers and C-arrays.

int i = 20;

int* iptr = &i;

int* j1 = iptr;

int j2 = *iptr;

int intArray[] = {1, 2, 3, 4, 5};

intArray[3] ≡ *(intArray + 3)

Pointer

nullptr

▪ By assign a nullptr to pointer, the pointer becomes a null pointer

▪ Cannot refer to a value and cannot be dereferenced.

▪ Can be compared with each pointer and can be converted to each pointer.

▪ Can only be converted into a boolean.

▪ Can be used in a logical expression.

Don't use 0 or NULL as a null pointer.

▪ 0: can be the null pointer ((void*)0) or the natural number 0

▪ NULL: macro

int* a = nullptr;

if (!a) std::cout << "will be called\n";

