
Thread Creation

A thread gets its callable (thread of execution) and starts immediately. It
needs the header <thread>.

▪ A callable unit can be a

▪ Function

std::thread t(function);

▪ Function object

std::thread t(FunctionObject());

▪ Lambda expression

std::thread t([]{ std::cout << "I'm running\n"; });

threadCreate.cpp

Threads Lifetime

The creator must take care of the lifetime of its child. The lifetime of the thread

ends with the end of the callable unit.

▪ The creator

▪ Waits for his child t: t.join();

▪ Detaches itself from its child t: t.detach(); daemon thread

▪ A thread t is joinable if a call t.join() or t.detach() was not

performed.

A joinable thread t calls in its destructor the exception std::terminate().

Program termination

Arguments of Threads

The thread should get its arguments by copy. Therefore, the validity of

the data is ensured. A thread can get an arbitrary number of arguments.

▪ Transfer of arguments
std::string s{"C++11"};

▪ By copy

std::thread t([=]{ std::cout << s << std::endl;});

t.join();

▪ By reference

std::thread t([&]{ std::cout << s << std::endl;});

t.detach();

The lambda expression gets in this example the data.

threadArguments.cpp

Operations of Threads

Function Description

t.joinable() Checks if the thread t supports join or detach.

t.get_id(), std::this_thread::get_id() Returns the ID of the thread.

std::thread::hardware_concurrency() Hint for the number of threads that can run in parallel.

std::this_thread::sleep_until(abs_time) Puts the thread to sleep until the time point.

std::this_thread::sleep_for(rel_time) Puts the thread to sleep for a time period.

std::this_thread::yield() Offers the system to execute another thread.

t.swap(t2), std::swap(t1, t2) Swaps the threads.

The arguments of the sleep methods are time objects.

