e

Type Traits

Enables compile-time type checks, comparisons, and transformations.
=) Type traits have no influence on the runtime of the program.

= Requires the header <type traits>.

= Application of template metaprogramming
= Programming at compile time
= Programming based on types and not on values
= The compiler generates different code depending on the used types

e

Type Traits

. Type checks
= Primary type categories(: : value)
std::1is pointer<T>, std::1s integral<T>, std::is floating polnt<T>

= Composite type categories (: : value)
std::is arithmetic<T>, std::is object<T>

* Type comparisons (::value)
std::1s same<T, U>, std::1s base of<Base, Derived>,
std::1s convertible<From, To>

» Type transformations (: : type)
std::add const<T>, std::remove reference<T>,
std::add pointer<T>

std: :make signed<T>,

typeTraitsCategories.cpp

e

Type Traits: Objectives

= Optimization
= Code that improves itself during compilation
=) Depending on the type a special algorithm will be chosen.
» Optimized version of std: :copy, std::£fi11, Or std::equal
Algorithm can be directly applied on raw memory.

= Correctness

= Type information will be evaluated at compile time.

= The evaluated type informations combined with static assert, providesthe
necessary conditions for correctness.

