Move Semantics: User-Defined Data Types

User defined data types can support move- and copy semantics.

= Example:
struct MyData({

MyData () = default;
MyData (MyData&& m) = default;
MyDataé& operator = (MyData&& m) = default;
MyData (const MyData& m) = default;
MyDataé& operator = (const MyData& m) = default;
~MyData () = default;

s

= Move semantics has higher priority than copy semantics.
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= user-declared: a member function which is used (defined, defaulted, or deleted)
» defaulted: a member function which the compiler generates or is requested via default
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