Move Semantics: User-Defined Data Types

User defined data types can support move- and copy semantics.

= Example:
struct MyData({

MyData () = default;
MyData (MyData&& m) = default;
MyDataé& operator = (MyData&& m) = default;
MyData (const MyData& m) = default;
MyDataé& operator = (const MyData& m) = default;
~MyData () = default;

s

= Move semantics has higher priority than copy semantics.

T

Automatically Generated Member Functions

compiler implicitly declares

default
constructor

copy copy move
| constructor | assignment | constructor

move

destructor .
assignment

n
D
©
O
0]
o
—
o)
(93}
=

Nothing
Any

constructor
default
constructor |

destructor

copy

constructor

copy

assignment

move

‘constructor

move

assignment

defaulted

not

declared

user

defaulted

not
declared

defaulted

not
declared

declared

defaulted

defaulted

defaulted

user

declared

defaulted

by Howard Hinnant

defaulted

defaulted

defaulted

defaulted

defaulted

defaulted

defaulted

defaulted

user

‘ declared

defaulted

defaulted

defaulted

defaulted

defaulted

defaulted

user

| declared

!

deleted deleted I

deleted

deleted

defaulted

defaulted

defaulted
not
declared

not
declared

not

declared

user
declared

not

| declared

defaulted

defaulted

defaulted

not

declared

not

declared

not
declared

not

declared

user
declared

= user-declared: a member function which is used (defined, defaulted, or deleted)
» defaulted: a member function which the compiler generates or is requested via default

https://howardhinnant.github.io/

