std::vector<int> a, b;

swap (a, b);

template <typename T>
void swap (T& a, T& Db) {

T tmp (a);
a = b;
b = tmp;

}
template <typename T>

void swap (T& a, T& Db) {
T tmp (std::move(a))
a = std::move (b);

b = std::move (tmp) ;

swap.cpp

e

Copy versus Move: swap

T tmp(a)

Allocates tmp and each element from tmp.
Copy each element from a to tmp.
Deallocates tmp and each element from tmp.

T tmp (std::move (a))

Redirects the pointer from tmp to a.




e

Move Semantics: std: :move

The function std: :move moves Its resource.

" std::move
= Needs the header <utility>.
= Converts its argument into a rvalue reference.

= The compiler applies move semantics.

= [sunderthe hood a static cast to arvalue reference
static cast<std::remove reference<decltype (arg)>::type&&>(arqg);

NP

?‘;_jf Copy semantics is a fallback for move semantics.

"]




e

Move Semantics: STL

Each container of the STL and std: : string has two new construtors:
= Move constructor
= Move assignment operator

» These new member functions take its arguments as non-constant rvalue references .

= Example
vector{
vector (vector&& vec); // move consturctor
vector& operator = (vectoré&& vec); // move assignmen operator
vector (const vectoré& vec); // copy constructor
vector& operator = (const vectoré& vec); // copy assignment operator

-

ML
=(w )= The classical copy constructor and copy assignment operator take its argument as constant
“g/ Ivalue reference.

-




