std::array

std::array<int, 10> myArr{1l, 2, 3, 4, 5, 6, 7, 8, 9, 10};
" std::array
= needs the header <arravy>.

* |s a homogeneous container of fixed length.
= |ssimilarto std: :tuple.

= combines the storage and runtime characteristics of the C array with the
Interface of a C++ vector.

= can be used in the STL algorithm.

std::array

Specializations of the initialization
" std::array<int, 10> arr: Elements are not initialized
" std::array<int, 10> arr{}: Elements are default initialized

» std::array<int, 10> arr{l, 2, 3, 4, 5}: Remaining elements are default
initialized

» Relationship with std: : tuple
" arr[4] == std::get<4d>(arr)

e

std: :vector

) L}

size capacity

std: :vector<int> myInt{l, 2, 3, 4, 5, o6, 7, 8, 9, 10};

= std::vector
= Need the header <vector>
= Manages automatically its memory
= Stores it elements continuously » support pointer arithmetic
= Reserves more memory than needed » reduces expensive memory allocation

std: :vector

= Special elements
vec.front () : first element (not checked)

vec.back () last element (not checked)

= |ndex access
vec[n] » vector boundaries are not checked
vec.at (n) » vector boundaries are checked (std: :out of range exception)

= Pointer arithmetic
svec[i] = &vec[0] + 1

vectorConstructor.cpp

std: :vector

Elements

Assign

vec.assign(...)

Insert

vec.linsert(...), vec.push back(elem)

In-place creation

vec.emplace (pos, args ...), vec.emplace back(args ...)
= Clear
vec.pop back(), vec.erase(...), vec.clear()

vectorModify.cpp

std: :deque

14
L
4

- 12:345

std: :deque<int> deqg{l, 2, 3, 4, 5, 6, 7, 8, 9, 10};

» std::deque (double ended queue)
= needs the header <deque>.

= Relationto std: :vector

" std::deque is quite similarto std: :vector

= Extended interface of std: :deque
" deg.push front(elem), deg.pop front () and deq. emplace front(args ...)

std::1list

& :2 o3 A CBE-4E ols (2] |28 =

std::1list<int> 1lis{l1, 2, 3, 4, 5, 6, 7, 8};

std::1list
» needs the header <list>.
» |s quite differentto std: :array, std::vector, and std::deque.
» fast access at the front and end of the list.

y

g« std::1ist has many special member functions optimized for pointer manipulation.

N2

o —

I\\

e

std::forward list

1.;2.;3.;4.;5-}6-}7-}8-

std::forward list<int> for{l, 2, 3, 4, 5, 6, 7, 8};

" std::forward list
= needs the header <forward list>.

* js asingle linked list.
= gimilarto std: :1ist, but with a restricted interface.

= optimized for minimal memory requirements.

N2

=
2N
|

std::forward list is designed for the special use case.

