
std::array

std::array<int,10> myArr{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

▪ std::array

▪ needs the header <array>.

▪ is a homogeneous container of fixed length.

▪ is similar to std::tuple.

▪ combines the storage and runtime characteristics of the C array with the

interface of a C++ vector.

▪ can be used in the STL algorithm.

1 1098765432

std::array

▪ Specializations of the initialization

▪ std::array<int, 10> arr: Elements are not initialized

▪ std::array<int, 10> arr{}: Elements are default initialized

▪ std::array<int, 10> arr{1, 2, 3, 4, 5}: Remaining elements are default

initialized

▪ Relationship with std::tuple

▪ arr[4] == std::get<4>(arr)

std::vector

▪ std::vector
▪ Need the header <vector>

▪ Manages automatically its memory

▪ Stores it elements continuously support pointer arithmetic

▪ Reserves more memory than needed reduces expensive memory allocation

std::vector<int> myInt{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

1 1098765432 grow

capacitysize

std::vector

▪ Special elements

vec.front() first element (not checked)

vec.back() last element (not checked)

▪ Index access

vec[n] vector boundaries are not checked

vec.at(n) vector boundaries are checked (std::out_of_range exception)

▪ Pointer arithmetic

&vec[i] &vec[0] + i≡

vectorConstructor.cpp

std::vector

▪ Elements

▪ Assign
vec.assign(...)

▪ Insert

vec.insert(...), vec.push_back(elem)

▪ In-place creation
vec.emplace(pos, args ...), vec.emplace_back(args ...)

▪ Clear
vec.pop_back(), vec.erase(...), vec.clear()

vectorModify.cpp

std::deque

std::deque<int> deq{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

▪ std::deque (double ended queue)

▪ needs the header <deque>.

▪ Relation to std::vector

▪ std::deque is quite similar to std::vector

▪ Extended interface of std::deque

▪ deq.push_front(elem), deq.pop_front() and deq.emplace_front(args ...)

1 2 43 5 76 8 109

std::list

std::list<int> lis{1, 2, 3, 4, 5, 6, 7, 8};

std::list

▪ needs the header <list>.

▪ is quite different to std::array, std::vector, and std::deque.

▪ fast access at the front and end of the list.

std::list has many special member functions optimized for pointer manipulation.

1 2 3 4 5 6 7 8

std::forward_list

std::forward_list<int> for{1, 2, 3, 4, 5, 6, 7, 8};

▪ std::forward_list

▪ needs the header <forward_list>.

▪ is a single linked list.

▪ similar to std::list, but with a restricted interface.

▪ optimized for minimal memory requirements.

▪ std::forward_list is designed for the special use case.

1 2 3 4 5 6 7 8

