
Strategized Locking

Strategized Locking 

▪ makes it possible to use various locking strategies as interchangeable components.

▪ applys the Strategy Pattern to locking.

▪ Idea:

▪ You want to use your library in different domains

▪ Depending on the domain, exclusive locking, shared locking, or no locking should be used

▪ Inject your locking strategy at run time or compile time



Strategized Locking

Advantages:

▪ Runtime polymorphism 

▪ Allows changing the locking 

strategy during runtime

▪ Is easier to understand for 

developers with an object-

oriented background

▪ Compile-time polymorphism 

▪ Has no costs at runtime

▪ Has a flat hierarchy

Disadvantages:

▪ Runtime polymorphism 

▪ Needs a pointer indirection

▪ Can have a deep object 

hierarchy

▪ Compile-time polymorphism 

▪ Can generate error messages 

that are difficult to understand

strategizedLockingRuntime.cpp
strategizedLockingCompiletime.cpp


	Slide 1: Strategized Locking
	Slide 2: Strategized Locking

