
Calculating the Sum of a Vector

1. Single-threaded summation

▪ Atomics are 12 - 50 times slower on Linux and Windows than std::accumulate.

▪ Atomics are 2 - 3 times faster on Linux and Windows than locks.

▪ std::accumulate seems to be highly optimized on Windows.

Calculating the Sum of a Vector

2. Multi-threaded summation with a shared variable

▪ Using a shared atomic variable with relaxed semantics and calculating the sum

with four threads' help is about 100 times slower than using a single thread with
the algorithm std::accumulate.

Calculating the Sum of a Vector

3. Thread-local summation

▪ It makes no big difference whether I use local variables or tasks to calculate the

partial sum or if I use various synchronization primitives such as atomics.

▪ Thread-local data seems to make the program slower.

Calculating the Sum of a Vector

1. Single threaded summation

▪ The performance of range-based for loop and std::accumulate are similar.

2. Multithreaded summation with a shared variable

▪ Synchronization is costly. Minimizing expensive synchronization must be your first goal.

3. Thread-local summation

▪ The thread-local summation is only two times faster than the single-threaded range-
based for loop or std::accumulate. The four cores are idle.

 The cores can’t get the data fast enough from memory.

	Slide 1: Calculating the Sum of a Vector
	Slide 2: Calculating the Sum of a Vector
	Slide 3: Calculating the Sum of a Vector
	Slide 4: Calculating the Sum of a Vector

