
Rainer Grimm

Training, Mentoring, and

Technology Consulting

C++26:
An Overview

C++26

Core Language

Reflection

Contracts

Placeholder

Template improvements

delete with reason

Library

Format extensions

std::inplace_vector

Linear algebra support

std::submdspan

Debugging support

Concurrency

std::execution

C++26

Core Language

Reflection

Contracts

Placeholder

Template improvements

delete with reason

Library

Format extensions

std::inplace_vector

Linear algebra support

std::submdspan

Debugging support

Concurrency

std::execution

Reflection

Reflection is the ability of a program to examine, introspect, and modify its

structure and behavior.

▪ ^^: Reflection Operator creates a reflection value from its operand (^^int and ^^char)
▪ [:refl:]: Splicer creates a grammatical element from a reflection value ([:r:] and [:^^char:])
▪ Reflection Value is a representation of program elements as a constant expression

Reflection

▪ Reflection

▪ Proposal P2996R5

▪ is a minimal viable product

▪ supports many metafunctions

▪ Metafunctions

▪ are declared consteval

▪ accept the reflection type std::meta::info

▪ Reflection Operator (^^)

▪ creates std::meta::info

daveed.cpp
getSize.cpp

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2996r5.html
https://godbolt.org/z/nseTvoGPG
https://godbolt.org/z/bzvMEPzK6

Contracts

A contract specifies interfaces for software components in a precise and

checkable way.

▪ The software component are functions and methods that must fulfill

preconditions, postconditions, and invariants.

▪ A precondition: a predicate that is supposed to hold upon entry in a function.

▪ A postcondition: a predicate that is supposed to hold upon exit from the function.

▪ An assertion: a predicate that is supposed to hold at its point in the computation.

▪ Contracts are based on the proposal P2961R2.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2961r2.pdf

Contracts

pre and post

▪ adds a precondition (postcondition). A function can have an arbitrary number of preconditions

(postconditions). They can be intermingled arbitrarily.

▪ are contextual keywords

▪ are positioned at the end of the function declaration

post

▪ can have a return value. An identifier must be placed before the predicate, followed by a colon.

contract_assert

▪ is a keyword. Otherwise, it could not be distinguished from a function call.

contract.cpp

https://godbolt.org/z/Wd7q3eMGf

Placeholders

Placeholders are a nice way to highlight variables that are no longer needed.

Placeholder

▪ is the underscore(_)

▪ can be used as often as you like

▪ does not emit a warning when not used

▪ is frequently used in Python

placeholder2.cpp

https://godbolt.org/z/habvG11os

Template Improvements

Pack Indexing enables the index access on parameter packs.

Pack indexing

▪ May be your favorite template improvement if you are template metaprogramming friend

▪ is based on the proposal P2662R3

packIndexing.cpp

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2662r3.pdf
https://godbolt.org/z/h4en7Wa6h

delete with Reason

With C++26, you can specify a reason for your delete.

▪ delete with reason

▪ will become best practice

▪ is based on the Proposal p2573r2

deleteReason.cpp

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2573r2.html
https://godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(filename:deleteReason.cpp,fontScale:16,fontUsePx:'0',j:1,lang:c%2B%2B,selection:(endColumn:1,endLineNumber:2,positionColumn:1,positionLineNumber:2,selectionStartColumn:4,selectionStartLineNumber:1,startColumn:4,startLineNumber:1),source:'//+deleteReason.cpp%0A%0A%23include+%3Ciostream%3E%0A%0A%0Avoid+func(double)%7B%7D%0A%0Atemplate+%3Ctypename+T%3E%0Avoid+func(T)+%3D+delete(%22Only+for+double%22)%3B%0A%0Aint+main()%7B%0A%0A++++std::cout+%3C%3C+!'%5Cn!'%3B%0A%0A++++func(3.14)%3B%0A++++func(3.14f)%3B%0A++%0A++++std::cout+%3C%3C+!'%5Cn!'%3B%0A%0A%7D%0A'),l:'5',n:'1',o:deleteReason.cpp,t:'0')),k:59.633027420659886,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:gsnapshot,filters:(b:'0',binary:'1',binaryObject:'1',commentOnly:'0',debugCalls:'1',demangle:'0',directives:'0',execute:'0',intel:'0',libraryCode:'0',trim:'1',verboseDemangling:'0'),flagsViewOpen:'1',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,libs:!(),options:'-std%3Dc%2B%2B2c',overrides:!(),selection:(endColumn:1,endLineNumber:1,positionColumn:1,positionLineNumber:1,selectionStartColumn:1,selectionStartLineNumber:1,startColumn:1,startLineNumber:1),source:1),l:'5',n:'0',o:'+x86-64+gcc+(trunk)+(Editor+%231)',t:'0')),k:1.703800783447426,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:output,i:(compilerName:'EDG+(experimental+reflection)',editorid:1,fontScale:16,fontUsePx:'0',j:1,wrap:'1'),l:'5',n:'0',o:'Output+of+x86-64+gcc+(trunk)+(Compiler+%231)',t:'0')),k:38.6631717958927,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

C++26

Core Language

Reflection

Contracts

Placeholder

Template improvements

delete with reason

Library

Format extensions

std::inplace_vector

Linear algebra support

std::submdspan

Debugging support

Concurrency

std::execution

std::inplace_vector

std::inplace_vector

▪ dynamically-resizable vector with compile-time fixed capacity

▪ contiguous embedded storage in which the elements are stored within the vector object

itself

▪ drop-in replacement for std::vector

▪ When std::inplace_vector? (P0843R8)

▪ memory allocation is not possible

▪ memory allocation imposes an unacceptable performance penalty

▪ allocation of objects with complex lifetimes in the static-memory segment is required

▪ std::array is not an option, e.g., if non-default constructible objects must be stored

▪ a dynamically-resizable array is required within constexpr functions

▪ the storage location of the inplace_vector elements is required to be within the

inplace_vector object itself (e.g. to support memcpy for serialization purposes)

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p0843r8.html

std::format

▪ Pointers

▪ Before C++26, only void, const void, and std::nullptr_t pointer types are

valid.

▪ If you wanted to display the address of an arbitrary pointer, you must cast it to (const)

void*.

▪ Newline
▪ println()

•

Linear Algebra Support

<linalg> is a free function linear algebra interface based on the BLAS.

▪ BLAS: Basic Linear Algebra Subprograms is a specification that prescribes a

set of low-level routines for performing common linear algebra operations

▪ vector addition

▪ scalar multiplication

▪ linear combinations

▪ matrix multiplication

▪ These operations are the de facto standard low-level routines for linear

algebra libraries.

std::submdspam

std::submdspan

Debugging Support

C++26 has three functions to deal with debugging.

▪ std::breakpoint: pauses the running program when called and passes the control to

the debugger

▪ std::breakpoint_if_debugging: calls std::breakpoint if

std::is_debugger_present returns true

▪ std::is_debugger_present: checks whether a program is running under the control

of a debugger

C++26

Core Language

Reflection

Contracts

Placeholder

Template improvements

delete with reason

Library

Format extensions

std::inplace_vector

Linear algebra support

std::submdspan

Debugging support

Concurrency

std::execution

std::execution

std::execution provides “a Standard C++ framework for managing

asynchronous execution on generic execution resources“. (P2300R10)

▪ std::execution

▪ previously known as executors or senders/receivers

▪ stdexec is the reference implementation of this proposal. It is a complete implementation,

written from the specification in this paper, and is current with \R8.

▪ Has three key abstractions: schedulers, senders, and receivers, and a set of customizable
asynchronous algorithms.

godbolt

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2300r10.html
https://github.com/NVIDIA/stdexec
https://godbolt.org/z/7nnKd3sWG

std::execution

The “Hello word” program of the proposal P2300R10.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2300r10.html

std::execution

▪ Execution resources

▪ represent the place of execution

▪ don‘t need a representation in code

▪ Scheduler

▪ represent the execution resource

▪ The scheduler concept is defined by a single sender algorithm: schedule.

▪ The algorithm schedule returns a sender that will complete on an execution resource

determined by the scheduler.

std::execution

▪ Sender describe work

▪ send some values if a receiver connected to that sender will eventually receive said

values

▪ Receivers stops the workflow

▪ it supports three channels: value, error, stopped

std::execution

▪ Sender factories

▪ execution::schedule

▪ execution::just

▪ execution::just_error

▪ execution::just_stopped

▪ execution::read_env

▪ Sender consumer
▪ this_thread::sync_wait

▪ Sender adaptors

▪ execution::continues_on

▪ execution::then

▪ execution::upon_*

▪ execution::let_*

▪ execution::starts_on

▪ execution::into_variant

▪ execution::stopped_as_optional

▪ execution::stopped_as_error

▪ execution::bulk

▪ execution::split

▪ execution::when_all

C++26

Core Language

Reflection

Contracts

Placeholder

Template improvements

delete with reason

Library

Format extensions

std::inplace_vector

Linear algebra support

std::submdspan

Debugging support

Concurrency

std::execution

Rainer Grimm

Training, Mentoring, and

Technology Consulting

Blog: www.ModernesCpp.com

Mentoring: www.ModernesCpp.org

http://www.modernescpp.com/
https://www.modernescpp.org/

	Slide 1
	Slide 2: C++26
	Slide 3: C++26
	Slide 4: Reflection
	Slide 5: Reflection
	Slide 6: Contracts
	Slide 7: Contracts
	Slide 8: Placeholders
	Slide 10: Template Improvements
	Slide 11: delete with Reason
	Slide 12: C++26
	Slide 15: std::inplace_vector
	Slide 16: std::format
	Slide 19: Linear Algebra Support
	Slide 20: std::submdspam
	Slide 21: Debugging Support
	Slide 22: C++26
	Slide 23: std::execution
	Slide 24: std::execution
	Slide 25: std::execution
	Slide 26: std::execution
	Slide 27: std::execution
	Slide 28: C++26
	Slide 29

